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A GAME OF OPTIMAL PURSUIT OF ONE NON-INERTIAL OBJECT BY 
TWO INERTIAL OBJECTS* 

A.YU. LEVCHENKOV and A.G. PASHKOV 

A game in which one controlled object is pursued by two others is studied. 
The pursuing objects are inertial,‘ and the pursued object is not. The 
duration of the game is fixed. The payoff functional is the distance 
between the pursued object and the closest pursuer at the instant when 
the game ends. An algorithm for determining the payoff function for all 
possible positions is constructed. It is shown that the game space 
consists of several domains in which the payoff is expressed analytically, 
or is determined by solving a certain non-linear equation. Strategies of 
the pursuers which guarantees them a result as close to the game payoff 
as desired are indicated. 

The optimal solution of a game of pursuit when one inertial object 
pursues a non-inertial one was obtained earlier in /l/. T..e present 
paper is related to the investigations reported in /l-10/. 

1. Let the mcticns of the pursuers Pi (r’)(i= 1,2) and of the pursued object E (z) be 
described by the equations 

x1- pi xzi, 
. 

fg- = u;, x2.’ =i xf, z,” = d*, 21’ = VI. 21’ = up (1.1) 

The control vectcrs of the pursuers and the pursued satisfy the constraints 

((ux')' + (u*i)?)l.I &p > 0, (s* + v*Z)< v (1.2) 

The game is studied over the tine interval [to.*). The payoff functional is the distance 
between the pursued object and the nearest pursuer at the instant 1 = 6 that the game ends, 
i.e. 

As a result of the change of variablesyj' = r,'-i @ - t) I:_, (i = i.Z),which means passing 
to considering the centres oc I regions of attainability of the inertial objects, relations 
(l.l)-(1.33 take the form 

yj” = (6-t)Lfj't Yj'(io)=sj'(lo)T(~-ftO)Z~_2(fO) (1.4) 

y" minj]{i1(8)- yt'@))$ S&(6) - f/;((t)folza (1.5) 

At the instant t = 6 the values of p found from (1.31 and (1.5) are identically equal. 
We denote the centres of the attainability regions by pt. For the positions where p,'= p;, 

the payoff of the two-to-one game, denoted by pz', 
to-one game denoted by p". 

is identical with the payoff of the one- 
Henceforth we consider those initial positions for which P,“p P,‘. 

*Prikl.Matem.ifekhan.,49,4,536-547,1985 
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Let us introduce a mobile coordinate system linked to the current position of the pursuers. 
We direct the q, axis from the current position of the first pursuer to the current position 
of the second (the numbering of the pursuers is fixed and arbitrary). The q2 axis runs through 
the middle of the segment rP,P,I, at right angles, so as to obtain a right-oriented system of 
coordinates. In this system, the position of the object E will be defined by the coordinates 

{r. Y)* and that of the pursuers Pi by the coordinates {(-i)%, 0). Because the position of 
the pursuers is symmetric in this system, the vector E(x, y,.z) fully describes the mutual 
location of the pursuers and the pursued. 

In special cases, simultaneously with the above mobile coordinate system (q1.q2) we shail 
consider an immobile Cartesian system (n,.~). the axes of both systems coinciding at a certain 
instant of time. The system (t11.n2) is convenient for carrying out geometrical constructions 
and for considering optimal motions. 

The dynamics of the phase vector E is described by the following system of differential 
equations: 

(1.6) 

The constraints on the control of the players have the form (1.2). The payoff functional 
is determined from the formula 

1' = I(; (8) - 1 I (6) I)' $ y* @)I': (1.7) 

In (1.6!, the vector lJ = {VI. us) has, in relation to the system (n*. 112)) I the meaning of 
the absolute velocity of the point E, and the vectors u’ = {Ul’, IL*‘) are proportional, with a 
factor (6 - t), to the velocities of the points Pi. Thus the first twc formulae in (i.6: prod>Jce 
expressions for the relative velocity of the point E in the mobile system i9,. q2). and the 
component z' describes the relative velocity of the pursuer. 

We shall carry out some geometrical constructions in the coordinate system (nl,n?). A 
circle of radius r (lo) = 11 (6 - t0)2 i 2 with its centre at the point {(-l)i+rz (to), 0) will be tile 
attainability region Gi{to. 8) of object Pi from the specified initial position at the instant 
t = t, to the instant t = 6. The attainability domain GL(tO, 8) of object E from the specified 
initial location position at the instant t = 1, to the instant t =6 will be a circle cf radius 
R (to) = v (8 - to) with its centre at the pcint {x, y}. We shall denote the boundaries of the 
domains G' (to. e) and G, (to. it) by a (G') and 8 (G,) respectively. We shall mean by the Fosition 
of a game the vector {t, E(t)} of the extended phase space. 

Suppose that we are giver. {to. E (t,,)) BC the initiai position of the game. The fciioK:n? 
mutual locations ci the 
are possible: 

1) 3 (6) I tlz = {Zl 
2~ 8 (G,) 7 'lo = f.4,. 
3) a (G,) 7 ‘12 = (41. 

?he first twrj CBses hrE 

objects P, and E, the attainability region G, (to. 6), and the 11~ a,::~ 

or 8 (G,),l n2 = {A). where A 1s B unique pcint: 

A*) with A,# -4, and Es PIAIPzA,; 

‘421 with A, # A, and E E int P,A,P,A,. 

described bj- the followin,- ir.equaiity ccr.taini?? the vectcx E; an5 tine: 

-_kL> z--/z1 
v((8-1) ((2 - / = I)* -7 Y2/' ’ 

The situaticn correspondin; to case 2 is described by 

shown in Fl,.l. 

. ^, 
SL.b. 

the opposite inequality and is 

Fig.1 Fig.2 
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a certain three-dimensional domain 

P 
11 - - p" takes place. Obviously in D" 

the nearest pursuer. 
and DN". We consider the quadratic 

2. Inequality (1.8) separates out in phase space 
(denoted by Dl’), in which the one-to-one game, that is 
the problem reduces to a game of pursuit between E and 

Let us divide the domain D1l into subdomains DR” 
equation 

(t-toy- 2p- &)(e-t0-$) + % =o (2.1) 

c = ((IZI - z)’ + y)‘)“l 

The boundary r,of DR” and DN” satisfies the relations 

d=(6-+.+ +o, tl=l*ato (2.2) 

Cd is the discriminant, and tl, i, are the roots of Eq.(2.1) 1. 
One of the following two conditions is satisfied in domain DR=l : either d <O, or 

d > 0 and tl < 1* < to* In domain DNzl the real roots of Eq.(2.1) satisfy the inequality 

t, < t, 2 t,. 
We denote by y*" the programmed maximin in the one-to-one game. It follows from /l/ 

that in the domain DR 1X the payoff of a game satisfies the relation pla = y,“, and in the domain 
DT = DN” U r0 the equation p" = v2 / (2~). Obviously, for to > e - v f F the set DN” is 
empty. 

3. Consider case 3) shown in Fig.1 (in (1.8) there is an opposite inequality). This 

case is comparable with the three-dimensional domain D*’ separated from D" by the surface 
rl defined by the relation EE a(P,A,P,A,), where 5 (P,A,P,A2) is the boundary of the 
tetragon P,A,PdA,. The surface rl consists of three parts: rX& (this separates DR” and 
Dzl),I’N1 (this separates DX” and D21)1 and the line L on which the relations (2.2) are 
satisfied together with the condition EE a(P,A,P,A,). 

Let us divide the domain DZ1 into the open subdomains DRZ’ and DIV. For this, we 
consider the quadratic equation 

VShQ (t--to)2-2(t--to)(6-ta-_ 2Y 
B SD B0 1 

+ .= 
p sm $4 

0 (3.1) 

sin Q = (vp(tY- t# - zp (tp))';~/(v(fi - tp)) 

sin& = Y PO) + = (lo) 'g a, 
((v (to) + z (to) tg a# + z'U0)P 

The surface r2 will be a boundary of subdomains DR2’ and D_V21. The points of r2 satisfy 
the relations 

VU is the discriminant, and il, t, are the roots of Eq.(3.1)). 
Let us clarify the meaning of Eq.(3.1). Let points Aland AZ in the fixed system (nI.112) 

have the coordinates (0,~~) and (O,a,) respectively, and point A the coordinates (0, maxi (! Us I} 
s&n Y (to)) (i.e., A is the point of the set (A,, A*) furthest removed from the pursuers). 
Next, let the players P, and E take extremal aim at the point A. We shall describe the 
corresponding motion as an extremal prograrnned motion. Then the number t=tl will be the 
root of Eq.(3.1) if on the extreme1 programmed motion we have y(1,)= 0. Thus, the presence 
of the root 1 = 1, reflects the fact that the projections of points Pi and E coincide on the 

'12 axis at the instant t = t,. 
The domain DRZ1 is a subdomain Dzi in which one of the following conditions is satisfied: 

d* <O or d* > 0, but neither of the roots t, and t,exceeds tn. The domain D.Y" is a sub- 
domain D2’ in which the condition d*> 0, and f,> to,&> t, hold. The cases described cover 
all possible relations of the roots t,, 2, of Eq.(3.1), and t, since the situation t,< t, < f, 
is impossible because of the definition of point A. Therefore we have DR21 d rr U DN2’ = D21. 

The points of the surface r2 have the following property. By virtue of Eq.(3.2), the 
roots of Eq.(3.1) are identical; at the same time, at the instant t = t,- f, not only the 
projections but also the velocities of projections of points Pi and E on the n2 axis are equal. 

The division of the phase space is shown schematically in Fig.2. 

4. Let {to, E (lo)) f DRZ’ in rI = DR”. We shall consider the function of programmedmaximin. 

P* *I = mar {Y,, 15) (4.1) 

yk = (2' (t,,) + ak2)"r - p (6 - t,)* f2, k = 1, 2 

=I, 9. = y (to) f ((v (6 - to))’ - t’ (to))‘:’ 

It can be shown that yr21 is u-stable /2/ in the domain DA". The property of v- 
stability of the function yea1 follows from the definition of this function. Thus, a function 
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with (I.&V) stability has been constructed in the domain m. 
Proof of the u-stability of U Y. in the domain m We introduce additional constraints 

on the control of the players P,. We set 

Uil = -IL,% = Y1, lt2' = Uil = lb, (4.2: 

System (1.6) takes the form 

r' = VI1 y' r U* - (6 - 1) IAt, 2' = - (8 - l) "1 (4.3: 

Let US show that when the constraints (4.2) are imposed on the control of the pursuers, 
the function 7*2X will be u-stable in DR1'. Hence follows the u-stability of this functicn 
also when there are no constraints. 

lo Le+ * L (t,,f(t,))t~D~with g(Q>O. This means that E~[IP,P,l, In this case under con- 
sideration we have *;.*I = y, > .i? We shall prove that under these conditions the function y.21 
satisfies the Bellman equation 

(4.4) 

We introduce the notation 

r = ((7 ($ - I))' - r2)"., PI = y + )‘, R‘ = (Q i_ Q)"* 

Then Y.*' = I?,- TV (8 - f)*i2. Onsubstituting this expression into (4.4), we obtain 

It can be verified that +he minim,um with respect to u on t:le right side cf this expression 
equals -+I(*- i), and the maxim- with respect to i- is -~~G(e-r; tR,r). Thus the basic equation 
is sa+is=ied CL. 

20. 1 Now ret (foj t (rr‘i) E m1 with y (1,) = 0. Hence, for 2= 1, the equality y*z'= T, = 71 
holds, and the functicr. *;*?I is net differentiable. We use Theorem (3.2.1) from /3i to vertifj 
the u-stability cf tke f;lncticn T.*'. Thus, we rrijst prove the inequality 

maxc min, max j&j) j dl, &;,: dl) + 0 Ci.5‘ 

Let us 5ntrcilice the fcl;ci;;n: notaticr,: 
r = ({Y (lj - l){? - I21 1, R _i (22 T $,I 1 

Then Y,~ = II - p (B- fl: 2. o!= T. a:== -7, anclnequality 14.5) takes the for: 

To estimate 'the fcnctic- .I g . we ccnsider its c3iitc.X lines (I = c = CODS~ in (s), 5,) axes 
where s,= uI (6 - 2:. s1 = U: (8 - f). We denote by 6 the straight line 1+\6- f)= cS in the (sltsP) plane. 
Let i?~ 1~ (6 -fj i-R-‘. %]. Under this ass3zmpticn a minlrr.-m is attained at the pcint A (Fig.3a). 

Fig.3 

Then we have 

finally, we oktain 
max,min, q = maxF (run - IL’, - Rp (6 - 0) = Y* (a - t) - Ap (8 - t) 

Clearly, expression (4.6) holds (equality occurs!. 
NOW, let O<C~<)L(B-~)~R-~. Then the minimum of the function p with 

attained for up= +/(d--1) (Fig.3b:. Therefore, 
respect to u is 
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msx, min, (- (8 - 1) “1Z - IQ + r 1 u, - (6 - I) “r I) = mu, (- s (p’ (8 - t)’ - u,‘)” - tu1) 

To be specific, let us assume that z>O. Then, obviously, ~+--(Y'-of)%* Consider the 
function f (ut) 5 + (v* - y1*)"1 - I (p* (6 - t)* - q+, 

By computing the derivative f,’ we can show that, under the condition R>p(t?-V, the 
function f(~,) increases monotonically in the section O(v,<c(8--)rR-*. Therefore, the maximum 
of ~(VJ is attained at the end point of the section when c,= ~(6--)rR-l, and inequality (4.6) 
becomes a strict equality. 

Thus, inequality (4.5) is proved. 
The case of u,<O can be examined similarly. 
Note that the proof of the u-stability of the function y.2' for the case in Sect.2' could 

have been constructed in the same way as the proof given in /lo/. 

5. Consider the set Dhr21. For t>+ - v ' ~1 we have DN*’ = {@). Therefore, for the 
points of set m the inequality t(6- v / u. It can be shown that 

pp',: p" (t, E) = v*/(2p), (i, 6) E DM” 

Clearly, p*l= +/(2p) corresponds, for example, to those positions of (t,f(f)) ED%*] where 
absorption occurs (S, is the two-dimensional sphere of unit radius, k5= v*/(2p)) 

The relations 

(G’ @. e,) $ kS* 3 v, (1, 6)) 

min ppl = v* / (2p), {t, &} E r.V, I: L : infy,*' = v* / (2p) (f E} E I-* . 1 
11, El 0. El 

hold for any f<e-V:p. 
Since D?P= (;_n) when t= 6-‘v/p. the trajectory of the system should, starting from 

any initial position {to, &(I,))EDK*~ when iO<B- V, p. cross either r, or Tr not later than 
the instant z F 6- YIP. Therefore, Eq. (5.1) holds. 

Let us divide the set Dh-” into two: DXi?‘, where p?'> v*/ (2p), and DNcl, where 

P 2'=9/(2p). We will denote the boundary of domains DX1?’ and Dhrezl by r3. An algorithm for 
constructing these domains is given in Sect.11. 

6. Let {to, c (to)} E DF,*l. For this position we formulate auxiliary game problem 1 whose 
conditions are as follows: 

A. The equations of motion and the constraints on the control of the players are identical 
with (1.6) and (1.2). 

B. The time of the game, T, is not fixed (it follows from Sect.5 that T<e - v/p). 
C. The payoff of Game 1 will be the value of pn, if the system trajectory has emerged at 

boundary rl, or the value of y,'l if it emerged at bcundary I-?. 
To solve Game 1 it is necessary to consider the auxiliary Games 2 and 3 formulated below. 

7. Let {to, 5 (&,)} E DAVlzl, with EE IP,P,l. i.e. y (to) = 0. We introduce the auxiliary 
Game 2 by the following conditions: 

A. The equations of motion of the players are identical with (1.6). 
K. Besides the constraints (l.i), the following constraint is imposed on the control of 

the pursuers: for f,< t< T, the relation y (0 = 0 should hold along the system trajectory. 
C. The instant T of the end of the game is not fixed. 
D. The payoff of the game and the conditions of its termination are as Condition C in 

Sect.6. 
We note that in setting Game 2, the class of admissible strategies of the pursuers was 

changed: condition B can be satisfied in the class of counterstrategies cf players Pi only. 
In this case the result of the initial game will not change because, for a problem invclving 
the dynamics which is described by Eq.!1.6), a saddle point exists in the 'little' game. 

We will show that Game 2 will end on the surface rp. 
We assume the contrary, i.e. that the phase trajectory has crossed the boundary r,: (1, 

E(f))= rl. This, together with the condition y(1) = 0, means that at the instant t, player E 
coincided with one of the pursuers: E= Pi. But the payoff of the game for such a position 
is pZl= p" = 9 i (2p). Thus we arrive at a constradiction since the payoff of the game at the 
initial position is pzl > v*/ (2111. 

Consider the following strategies of the palyers: 

c'#J'": u 1l = - ul? =(,u* -(l&')*)":, l&*1 -i&r = u,/(6--t) (i.1) 

Vo(?): L’  1 = -ssign(z)min {lrl( P'(*z~_f):~-v' y, v) 

(C~,@) is the countercontrol of the pursuers, and I',(*) denotes the positional control of the 
evader). 
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Also, 
positional 

let WJ(~, v) be an arbitrary Counterstrategy of the pursuers, v@)fb) an arbitrary 
control of the evader, and y 

ing strategies. 
* the value of the ftmctional in Game 2 on the Correspond- 

It CM be shown that for U*(*) and V,@),the inequality of the saddle point 

y* (Uo”‘, P)) < y* (up), VOO) < y* (U”‘, Vo”‘) (7.3) 
holds. 

strati; fJo(*) 
First we shall prove the left-hand inequality of (7.2). To do this, we substitute 

into Game 2, and obtain a problem of the optimal control of player E, of the 
form 

c' = "1. 2' = - (p' (6 - t)’ - u**P, (V,' + v*+ Q v (7.3) 

For Ee[P,P*I on the section k#Br<T, the condition of ending the game (reaching r* 
by the trajectory) takes the form 

Q = (v' (6 - T)* + ** (T) -*I'(T))". - p (6 - T)*= 0 

The programmed maximin iS found from the formula 

(7.4) 

&*I = (VI (8 - T)* + z* (T) - z'(T))% - c (8 - T)* I2 (7.5) 

Thus, the functional of the problem is Y* = maxcrcrl~.u(?'). 

By the definition of the domain DNI*l, if the initial position is (r,, E (lo)) = LJN,*~ and the 
inequality r(f,)>Ir(f*) I>0 holds, the analogous inequality will hold at the instant t = T: 
2 CT) > I *(n I > 0. It can be shown that for to<:< T the identity r(I)=0 follows from the 
equation I (to) = 0 * 

It fdbdS from the maximum principle /11/thattheoptimalCOntrOlOfplayer EinGme2 should 
have the form 

(7.61 

Clearly, this value of the functional does not depend on the sign of the control U* since 
the trajectories generated by these controls are symmetric with respect to the qr axis. To 
be specific, let us set u*>O, and analyse the expression for vL from (7.6). We shall assume 
that for small t, a minimum is attained at the second term, that is u*(t)= -sign (z(T))v. In the 
coordinate system (Q,s), the rectilinear sections of the players' trajectories correspond to 
this control (Fig.4). Starting at a certain instant t =f, up to the instant f=T, a 
minimum in (7.6) will be attained at the first term. Therefore player E makes use of the 
control 

Fig.4 

GI (t, = -t (TJ (r* (6 - tj* - v*)'!r ! (9 (T) - *z (T))‘il (7.7) 

On substituting Eq.(7.7/ into system (7.3) we find that for I E it*, T] the relations 

2' (I) ! 5’ (I) = I: (T) / I (T) = e (2) i I(2) (7.8) 

exist, i.e. Z(PLZ(T) can be replaced by r(2).*(r) in the control law. 
The equality 

I (I,) (p’ (6 - q* - ,.l)“” / (2’ (i*) - I* (I,))“Z = Y 

holds at the instant t = 1, , hence I (t.)/ (p (8 - 1,)) = z (1,) 1 v. In a fixed coordinate system the 
beginning of a curvilinear motion by the players will correspond to the instant :=1, (Fig.4). 

It follows from (7.7) and (7.8) that on the curvilinear trajectory segment the projections 
of the velocities of the players Pi and E on the Q axis are proportional to the phase coordi- 
nates. For the velocity projections on the Q axis we have (6-:)I+~= (6--)up1= Q. Hence, 
considering (7.7) and (7-B), we have 

- I (1) U* (1) ! Cl (t) = I (1) Y*l (t) / Y,l (1, 

This means that on the curvilinear parts of the trajectory the velocity vectors of players 

p, and E are directed at the same pcint N lying on the q* axis of the fixed coordinate system. 
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During the curvilinear motion the point N shifts along the n, axis from the point 0 for t=t, 
to the point A (the point of extremal Aiming) for 1=F. 

The problem of optimal control (7.3)-(7.5) is solved. 
20 * The control (7.61 which solves problem (7.3)-(7.51 is A progrlumned control. However, 

using (7.7) and (7.8) this problem can be rewritten in A form identical to FO@), And considered 
as the positional control of player E. 

Let us now prove the first inequality in (7.2). For this, we substitute V,@) into Game 2, 
thus obtaining a problem of optimal control for players Pi,of the form 

2’ = v, (t. z, 2) - q*+, 2’ = qt-; ((~,i)* + (Ir&)‘~ G p 

The equation relating the phase coordinates And controls is given by 

(7.9) 

I = V* (1, z, I) - ')*+ - (1. / I) q*- E;;' 0 (7.10) 

The condition for ending the process and the payoff are (7.4) and (7.5) respectively (the 
pursuers tend to minimize ye*' (T)). 

In Eqsl(7.9) and (7.10) the functions Q(~,z, z) are components of the positional strategy 
PO@) of player E,Q* = l/,(6 - t) [a$& I$]. k p: 1, 2. 

As was done in lo, A check is made that the programmed control of the pursuers 0 (I) = 

~~'*'(~~*') satisfies the maximum principle for problem (7.91, (7.101, (7.4), (7.5). 

8. Let {t,, t (to)} E DIP and E f IP,P,l, that is y (to) = 0. We shall present An algorithm 
for obtaining the functional y* of the auxiliary Game 2. We shall assume, to be specific, 
that z(i,,)>o. Also, let the inequality z(2,)/(~ (6 - t,));Z x (to)iv which implies that in the 
optimal trajectory of Game 2 there isnostraight line section, be satisfied at the instant 
t=t 0 fFig.4). We introduce the notation 

J (to, t) = f (p2 (6 - r)* - v*p dT, Ao=((2*(tO)-t~(t0))1’~ 
h 

The equalities 

.z (2) = z (to) (1 - J (to. t)) i A,, I (t) = z (to) (i - J (to, f)) 1’ A,, (8.1) 

hold on the curvilinear section. 
Consider the equation 

J (to. t)! A, = 1 (8.21 

If it has the root t = t, _ =(to.61, then at the instant t = t, the equality z(I,) = I(&.)= 
0 holds. This points to‘the fact that y* = v*/(&I), and that the initial position is {to* t 
(t,)} E DN,?', i.e. pz' = v* ! (2~). 

Suppose that Eq.(8.2! has no root. At the instant t== T Eq.(7.4) should be satisfied. 
CR substituting (8.1) into (7.41, we obtain the following non-linear equation for determining 
the time T of Game 2: 

[v* (I? - T)? i (1 - J (to, T) / A,$ Ao21"~ = p (8 - T)* (8.3) 

We find the functional from the formula y* = p (S - T)* ‘2. 
If the relation z(tc)!(p(@ - to)) < r(&,) ‘v holds at the instant t = 1, , it means that 

the optimal trajectory of Game 2 has a straight-line section. Therefore we first seek the 
minimum root t = t* of the quadratic equation z(t)!(u (6 - t))= z(t) 'r,where 

T, 2(t)= Z(to)- v(t - ts) 
I, 

It can be shown that for {to$ E (to)) E DN, *I this root (which corresponds tc the instant 
when the straight-line section ends) certainly exists. Further, we assume t, 3 t* and perform 
the operations given at the beginning of this section. 

9. Now let {to, g (1,)) E Dh’lzl with Es iP,P,f. Let us assume that Y(&)> 0, and formulate 
auxiliary Game 3 for the above position. 

A. The equations of motion and the constraints on the control of players are identical 
with (1.6). 

B. The time of game T, is not fixed. 
C. Pursuers Pi tend to lead out the trajectory of the system on the surface '91 y(Tf)=O, 

at the same time minimizing the payoff v*(T,). The problem of the evader is the opposite. 
Below we shall build the positional strategies of the players which yield a saddle point 

for Problem 3, 
By the relations Y* -y* (z,z,t),~ =3'4 (y) and the maximum principle /ll/, the equations 
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should hold on the terminal surface y(y)= 0. These equations express the fact that the 
trajectory approaches the terminal surface along a tangential line. Suppose that the point 
N(O,n) belongs to the nr axis. We shall consider the coordinate n as a parameter and use 
the notation 

UN(s) =((- I)“'zp(zl + n*p, np (z' + n'p') 

V,@) - (- tv (2” + (n - yy)-“1’ (n - y) v (t* + (n - y)*p) 

(C.V(S’ and 1’~“’ are the extremal controls of players Pi and E, oriented at the point NT). 
We define the value of the parameter n = n* 

controls U#! and r'!% 
such that in the motion generated by the 

at the instant the game terminates t = Tt, the conditions of tangency 
(9.1) are satisfied, that is 'i" 3 y’=O. Since the initial position {to, E(t,,)) belongs to 
the set OK,*‘, the desired value of the parameter n* and the corresponding point K* (0, n*) 
certainly exist and are unique [because Ez IPIP, when t= to) Using the maximum principle 
one can check that L$! and Vg! yield a saddle point of the auxiliary Game 3: 

v'f(L$!, P)<v**(U!$!, v~!)<y**(Li@‘, Vj$!) (9.2) 

(,** is the value of the payoff y* on the corresponding strategies). 

10. Given the initial position {to, s (t,)} E DN12’, let us describe an algorithm 
obtaining y**. We put 

sin a, = (n - y (to)) ((n - y (to))* + 2* (to))‘! 
sin p, = n / (n* T 2* (to))"* 

for 

(10.1) 

and consider the equation 

(10.2) 

On substituting (10.1) into (10.2) we obtain a quadratic equation with parameter 
relative to the time T, when auxiliar)' Game 3 ends. Then n = n* is the desired value 

- 

n 
of the 

parameter if the discriminant of Eq.clC.2) is zero for n = n*. The instant t = T, when Game 
3 ends .corresponds to the value of n", and the game's final position {T,. .r (T,), 0, z (T,)) is an 
initial position for the auxiliary Game 2. Applying the procedure described in Sect.E,weobtain 
the value of the programmed maximin ya21 at the instant when the trajectory appears on the 
boundary I'*, t = T. We assume that I'** = IT**' (T). 

11. For t = t,, using the positional strategies C$i and I’#! we can divide the set 
DW into domains DN12’ and D,Y,*l. Set DS,” consists of a position {to. t (to)) for which 
the algorithm from Sect.10 yields I'** > V: (2~). On set DS,?’ the equation 

'i** = V*!(2,U) (11.1) 

hclds. 
For the points of set DAY,?’ , the strategies which furnish (11.11 are unique for both 

players. This fellows from ineq_uality !9.2). At the boundary r3 of domains DNIZ’ and 0~1’~‘~ 
the strategies of the pursuers, which ensure for them the existence of (11.11, are unique, 
but the evader's strategy is not unique. At the inner points of domain D.vz21 the strategies 
of both sides are net unique. This phencmenon takes place in domain D1’ as well (see /l/J. 

12. We set 

(to, :(to)) E DR?’ 

, (to, S(tc)) c Dfl” 

The function y*** is continuous in domain Dzl since the functions 
continuous in the corresponding domains of definition, and their values 
boundary r2. 

Assertion. The function y*** is (u. I;)-stable in the domain D*‘. 
The proof foilows fror; the existence of saddle points in auxiliary 

Corollary 1. The optimal solution of auxiliary Game 1 consists Of 

Games 2 and 3. 

a series of optimal 
solutions of Games 2 and 3. The strategies which furnish a saddle point for Game 1 have the 
form 

y,*land o** are 
are identical on the 
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Note that the strategy 1',(l) in (12.1) is positional, but strategies u,(l) are not pos- 
itionalsinceU,(') are the countercontrols. 

The optimal trajectory of Game 1 consists of two parts. The first is the optimal 

trajectory of Game 3 in the time interval t, < t< Tt. It can be called a trajectory of extremal 

guidance to point n'*. The second part is the optimal trajectory of Game 2 over the time 

interval r,<t< T. We shall refer to this as the trajectory of proportional pursuit, since 
along it the relation 2(%)/r(t) = const holds. 

Corollary 2. The introduction of constraint (7.14) on the control of pursuers in Game 2 
does not reduce the possibilities of players f'i in Game 1. 

Thus, if {t,, E (t,))EDN,21, the optimal trajectory of Game 1 will take place for some time 

on the surface y(2) = 0. during which it emerges on it (the instant t = T,), and goes down 

from it (t = T), along the tangent line (y' = 0 for Tj-< t < T'). 

13. Consider the function 

*r _ P", (to, 5 (to), f D" 
n -ls***, {to, E (to)) E D2' 

It is continuous, like the function y*** , over the whole space. It was shown earlier 

that p" and y*** are (a.~)-stable in domains D1' and D*l respectively. Therefore, the 
function p*' will be (u. I?)-stable over the whole space, i.e. it will be the payoff of game 

(l-6), (1.2)) (1.7). 

14. A typical trajectc-y of an ideal gave from the initial position {to, E(to)) E DAY,*' 
is show:. in Fig.5. It is a union cf the optinal trajectcry of Game 1 for to< t < T and the 
experimental programmed mot;on wher. T<i<V. 

Fig.5 Fig.6 

The set DA-,2’ can be divided intc silbsets D.V2dz1 and D_\‘2t2’. The subset DAY,,?’ corsists 

of those FcSitiOE {I,. E(fo)) for which the reiations 

are standard. 
WE note that for such positions a one-tc-one game between E a?d the closer pursuer, ccc;?rs 

that is pzl = p" = v* (2~). 
We determine the set D.Vpbcl as the difference cf the sets DS2b” = DAV221\D.V2d21. Fcr the 

initial positions {to. e (t,)}~ D.4-2b21, the ~'2' suers acting together ensure for themselves the 
result 1' 21=v2 /(2~) which is better than in the one-to-one game between B and one of the pursuers. 
Let us look into one of these positicns. We assume that players Pi and E apply the strategies 
lJ,(" and Y&l). Then the corresponding trajectory will be such that at a certain instant 

t = t, E IT,, T) the points Pi and E will coincide on the 11~ axis (i.e. z(f*)=.r(&)=O). 
Obviously, in such a motion Eqs.cl.6: hold tc the instant t = t,, since when t> T!., we have 
z (t) ,' I (t) = const 

Note. lo. On the basis of the payoff function constructed , given the known algorithms 
/5/P it is possible to formulate the physically realizable strategieswhich furnish the players 
with a result as close as desired tc the payoff of a game. 

2'. By virtue of the sym.metries of the optimal controls obtained for players P, and P, 
the one-to-one problem with the phase constraints of the 'semiplane' type has an analogous 
solution (Fig.6). 
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THE T~NSF~R~ATI~N OF LINEAR NON-STATIONARY OBSERVABLE AND &ONTROLL~LE 
SYSTEMS INTO STATIONARY SYSTEMS* 

N.B. VAVILOVA, V.I. K.X_ENWA and V.M. MOROZOV 

The methodclogical problems of the reducibility of some classes of linear 
non-stationary observable and contrcllable systems to stationary systems 
is considered. The constructive use of this property to analyse the 
coatrollabiiity and observability of non-stationary systems, and also to 
solve applied control and estimation problems, is proposed. 

For practical applications the separation of the classes of non- 
stationary systems, which can be investigated using simpie and effective 
methods sirilar to those for analysing stationary systems, is of interest. 
Linear non-stationary systems for which the fundamental matrix of the 
soiutions can be algorithmically simply constructed using the matrix of the 
coefficients, pertain to these calsses; in particular systems which can be 
reduced to stationary systems /l--5/ using the well-known non-degenerate 
transformation, and also systems which are Lyapunov-reducible /6, 7/. 
Although for non-stationary systems the sufficient conditions for control- 
labiiity and observability which do not require a knowledge of the funda- 
mental matrix of the initial system /8-lo/are known, the search for 
constructive transformations which reduce the initial system to a form 
suitable for analysing and synthesizing simple control and estimation 
algorithms is important and useful. 

1. Consider the linear non-stationary system 

I' = A (t) f + B (f) ii. 0 = c (t) I (1-l) 

where 5 is an n-dimensional state vector of the system, u is an r-dimensional vector of the 

controlling action, a is a k-dimensional vector of measurements and A (t). B (f), C (1) are 
matrices of corresponding dimensions, the elements of which are continuously differentiable 

l prikl.Hatem.Mekhan.,49,4,54B-555,1985 


